Informative Views and Sequential Recognition

نویسندگان

  • Tal Arbel
  • Frank P. Ferrie
چکیده

In this paper we introduce a method for distinguishing between informative and uninformative viewpoints as they pertain to an active observer seeking to identify an object in a known environment. The method is based on a generalized inverse theory using a probabilistic framework where assertions are represented by conditional probability density functions. Consequently, the method also permits the assessment of the beliefs associated with a set of assertions based on data acquired from a particular viewpoint. The importance of this result is that it provides a basis by which an external agent can assess the quality of the information from a particular viewpoint, and make informed decisions as to what action to take using the data at hand. To illustrate the theory we show how the characteristics of belief distributions can be exploited in a model-based recognition problem, where the task is to identify an unknown model from a database of known objects on the basis of parameter estimates. This leads to a sequential recognition strategy in which evidence is accumulated over successive viewpoints (at the level of the belief distribution) until a de nitive assertion can be made. Experimental results are presented showing how the resulting algorithms can be used to distinguish between informative and uninformative viewpoints, rank a sequence of images on the basis of their information (e.g. to generate a set of characteristic views), and sequentially identify an unknown object.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Informative Views and Active Recognition

In this paper we introduce a method for distinguishing between informative and uninformative viewpoints as they pertain to an active observer seeking to identify an object in a known environment. The method is based on a generalized inverse theory using a probabilistic framework where assertions are represented by conditional probability density functions. Consequently, the method also permits ...

متن کامل

Patch-based analysis of visual speech from multiple views

Obtaining a robust feature representation of visual speech is of crucial importance in the design of audio-visual automatic speech recognition systems. In the literature, when visual appearance based features are employed for this purpose, they are typically extracted using a “holistic” approach. Namely, a transformation of the pixel values of the entire region-of-interest (ROI) is obtained, wi...

متن کامل

Hidden Markov model-based face recognition using selective attention

Sequential methods for face recognition rely on the analysis of local facial features in a sequential manner, typically with a raster scan. However, the distribution of discriminative information is not unifom over the facial surface; for instance the eyes and the mouth are more informative than the cheek. We propose an extension to the sequential approach, where we take into account local feat...

متن کامل

Early biases and developmental changes in self-generated object views.

Object recognition depends on the seen views of objects. These views depend in part on the perceivers' own actions as they select and show object views to themselves. The self-selection of object views from manual exploration of objects during infancy and childhood may be particularly informative about the human object recognition system and its development. Here, we report for the first time o...

متن کامل

Learning Temporal Context in Active Object Recognition Using Bayesian Analysis

Active object recognition is a successful strategy to reduce uncertainty of single view recognition, by planning sequences of views, actively obtaining these views, and integrating multiple recognition results. Understanding recognition as a sequential decision problem challenges the visual agent to select discriminative information sources. The presented system emphasizes the importance of tem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996